
Trials@uspto.gov Paper 7
571-272-7822 Entered: December 7, 2023

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

AO KASPERSKY LAB,
Petitioner

v.

OPEN TEXT INC.,
Patent Owner.

IPR2023-00895
Patent 10,284,591 B2

Before BARBARA A. PARVIS, MICHELLE N. WORMMEESTER, and
AARON W. MOORE, Administrative Patent Judges.

MOORE, Administrative Patent Judge.

DECISION
Denying Institution of Inter Partes Review

35 U.S.C. § 314

IPR2023-00895
Patent 10,284,591 B2

2

I. INTRODUCTION

A. Background
AO Kaspersky Lab (“Petitioner”) filed a Petition requesting inter

partes review of claims 1–17 of U.S. Patent No. 10,284,591 B2 (Ex. 1001,

“the ’591 patent”). Paper 1 (“Pet.”). Open Text Inc. (“Patent Owner”) filed a

Preliminary Response. Paper 6 (“Prelim. Resp.”).

We may institute an inter partes review if “the information presented

in the petition . . . and any response . . . shows that there is a reasonable

likelihood that the petitioner would prevail with respect to at least 1 of the

claims challenged in the petition.” 35 U.S.C. § 314(a) (2018).

For the reasons provided below, we determine that Petitioner has not

demonstrated a reasonable likelihood that it will prevail in showing the

unpatentability of at least one challenged claim. Accordingly, we do not

institute inter partes review.

B. Related Proceedings

The parties identify the following district court cases as related to this

proceeding:

Webroot, Inc. et al. v. Trend Micro Inc.,
Case No. 6:22-cv-00239 (W.D. Tex.);

Webroot, Inc. et al. v. Sophos Ltd.,
Case No. 6:22-cv-00240 (W.D. Tex.);

Webroot, Inc. et al. v. CrowdStrike, Inc. et al.,
Case No. 6:22-cv-00241 (W.D. Tex.);

Webroot, Inc. et al. v. AO Kaspersky Lab,
Case No. 6:22-cv-00243 (W.D. Tex.); and

Webroot, Inc. v. Forcepoint LLC,
Case No. 6:22-cv-00342 (W.D. Tex.).

See Pet. 1–2; Paper 3, 1.

IPR2023-00895
Patent 10,284,591 B2

3

We previously instituted an inter parties review of the ’591 patent in

IPR2022-01522 and denied institution of an inter partes review of the ’591

patent in IPR2023-00692. Both of those proceedings were based on

references different than those presented by Petitioner.

C. The ’591 Patent

The ’591 patent describes “anti-exploit systems and methods,” where

“[a]n exploit is a piece of code, software, data, or a sequence of commands

that takes advantage of a bug, glitch or vulnerability in order to cause

unintended or unanticipated behavior to occur on computer software,

hardware, or any other electronic component.” Ex. 1001, 1:12–16, 1:33–35.

Figure 3 of the patent is reproduced below:

Figure 3 illustrates a method “for implementation of
anti-exploit systems and methods.” Id. at 10:5–7.

IPR2023-00895
Patent 10,284,591 B2

4

Method 300 begins at operation 302, “where a memory space of a

process is monitored for execution of at least one of a plurality of functions,”

which may include “any functions that attempt execution of another process

or loading of a module into a process memory, implementable by/in other

operation systems.” Id. at 5:10–15, 10:15–17. “The list of monitored

functions may change perpetually and can be updated . . . at any time to

improve the robustness of the functions monitored and improve security

against software exploits.” Id. at 5:15–19.

The ’591 patent specifically notes an example in which operation 302

“monitors functions associated with memory management in the memory

space by a user mode function (e.g., a call initiated from a user mode).” Id.

at 10:18–21. And the patent additionally notes an example of “applying,

upon detecting a function call of one of the plurality of functions in the

monitored memory space, a function hooking technique to hook a lowest

level user mode function of a called process (e.g., API).” Id. at 10:21–26.

Monitoring operation 302 “may further comprise detecting an attempt by

unidentifiable code to allocate a new executable page of memory and

monitoring the allocated new executable page of memory.” Id. at 10:26–29.

When one of the monitored functions is invoked, stack walk

processing is performed at operation 304 for an associated stack frame. Id. at

10:30–35. This is “a process that walks a stack frame for a hooked function[]

from a lowest level user mode function to an address of the invoked

function.” Id. at 10:35–39. Operation 304 also includes performing memory

checks during the stack walk processing, such as identifying an originating

address associated with the invoked function. Id. at 10:39–44.

IPR2023-00895
Patent 10,284,591 B2

5

Decision operation 306 determines whether a suspicious-behavior alert

is triggered based on execution of the memory checks. Id. at 10:45–48. This

includes whether:

code execution is attempted from non-executable memory;
a base pointer of a stack frame is invalid;
a stack return address is invalid;
attempted execution of a return-oriented programming technique

is detected;
the base pointer of a stack frame is outside a current thread

stack; and/or
a return address is inside a virtual memory area.

Id. at 8:18–33.

If no suspicious-behavior alert is triggered, code executed associated

with the invoked function is allowed at operation 308. Id. at 10:54–58.

Otherwise, if an alert is triggered, code execution associated with the invoked

function is prevented at operation 310, and suspicious behavior may be

reported at operation 312. Id. at 10:58–65.

Independent claim 1 is representative of the challenged claims, and is

reproduced below.

1. A computer-implemented method comprising:
monitoring a memory space of a process for execution of at

least one monitored function of a plurality of functions, wherein
monitoring the memory space comprises loading a component
for evaluating the at least one monitored function in the memory
space;

invoking one of the plurality of functions as a result of
receiving a call from an application programming instance;

executing stack walk processing upon the invocation of one
of the plurality of functions in the monitored memory space; and

IPR2023-00895
Patent 10,284,591 B2

6

performing, during the executing of the stack walk
processing before an address of an originating caller function is
reached, a memory check for a plurality of stack entries
identified during the stack walk processing to detect suspicious
behavior, wherein an alert of suspicious behavior is triggered
when the performing of the memory check detects at least one of
the following:

code execution is attempted from non-executable
memory,

a base pointer is identified as being invalid,
an invalid stack return address is identified,
attempted execution of a return-oriented programming

technique is detected,
the base pointer is detected as being outside a current

thread stack, and
a return address is detected as being inside a virtual

memory area,
wherein when an alert of suspicious behavior is triggered,

preventing execution of a payload for the invoked function from
operating.

Ex. 1001, 13:29–61.
D. Asserted Grounds of Unpatentability

Petitioner’s challenge raises the following grounds (Pet. 15):

Claims Challenged Basis
35 U.S.C. § Reference(s)

1, 3, 4, 6, 9, 11, 12, 14, 17 102/103 Fratric1
2, 5, 7, 8, 10, 13, 15, 16 103 Fratric, Sallam2

1 Ivan Fratric, Runtime Prevention of Return-Oriented Programming Attacks,
available at https://github.com/ivanfratric/ropguard/blob/master/doc/
ropguard.pdf (Exhibit 1007).
2 U.S. Patent App. Pub. No. 2012/0255018 (Exhibit 1008).

IPR2023-00895
Patent 10,284,591 B2

7

Petitioner also relies on the Declaration of Venkatramanan Siva

Subrahmanian, filed as Exhibit 1002. Patent Owner relies on the Declaration

of Nenad Medvidovic, Ph.D., filed as Exhibit 2001.

II. ANALYSIS

Fratric details a method much like that described and claimed in the

’591 patent. A component (“ropguarddll.dll” in Fratric’s example) is loaded

into a memory space, which it monitors for the execution of a monitored

function (called a “critical function” in Fratric). See Ex. 1007, 7. “[O]nce

the dll has been injected into the target process, it . . . proceeds to inline-patch

all of the critical functions defined in [a] configuration file to perform

appropriate ROP checks when called.” Ex. 1007, 8. Then, a call from an

application programming instance (e.g., that of Internet Explorer in the

example) that invokes a monitored, patched function causes “stack frame

checking,” which walks through the stack and checks the return addresses of

the critical function and of the function that called the critical function. That

appears to correspond to the claimed “invalid stack return address” check.3

See id. at 5. Fratric explains that the system “prevent[s]” return-oriented

programming attacks (see id. at 3), which Petitioner asserts is sufficient to

disclose preventing execution of a payload for the function from operating

when an alert of suspicious behavior is triggered, as claimed. See Pet. 36.

Fratric explains that “[i]f a ROP attempt is discovered . . . a message box

with the details about the problem will be displayed and the user can choose

to terminate the process or continue the execution.” Ex. 1007, 8.

3 The stack frame checking may be employed if the program is “compiled in
such a way that it uses EBP register as a stack frame pointer.” Ex. 1007, 5.

IPR2023-00895
Patent 10,284,591 B2

8

Petitioner argues that “Fratric teaches every element of claims 1, 3, 4,

6, 9, 11, 12, 14, and 17,” but that if Fratric does not disclose performing

memory checks “before reaching the address of an originating caller

function,” that would have been obvious. See Pet. 24–47. Petitioner adds

Sallam for features recited in dependent claims 2, 5, 7, 8, 10, 13, 15, and 16.

See id. at 48–61. In view of the parties’ arguments, we will focus our

discussion on independent claim 1.

Regarding the content of the prior art, Patent Owner argues that Fratric

does not disclose “monitoring a memory space . . . for execution of at least

one monitored function,” as recited in claim 1. See Prelim. Resp. 30–32. We

do not agree because, as explained above, Fratric describes how

ropguarddll.dll monitors the memory space for calls to execute critical

functions. Patent Owner also argues that Fratric does not disclose claim 1’s

“invoking one of the plurality of functions as a result of receiving a call from

an application programming instance.” We disagree with that argument as

well, because Fratric describes how an application (e.g., Internet Explorer)

would invoke one of the patched critical functions, causing the stack frame

checking. See Ex. 1007, 8. We thus find Patent Owner’s arguments

regarding the content of the prior art unpersuasive.

However, Patent Owner also argues that Petitioner has not shown

Fratric to be a printed publication under 35 U.S.C. § 102. See Prelim. Resp.

22–29. We agree.

“In an IPR, the petitioner bears the burden of establishing by a

preponderance of the evidence that a particular document is a printed

publication.” Nobel Biocare Servs. AG v. Instradent USA, Inc., 903 F.3d

1365, 1375 (Fed. Cir. 2018) (as amended Sept. 20, 2018). “[T]he key inquiry

IPR2023-00895
Patent 10,284,591 B2

9

is whether or not a reference has been made ‘publicly accessible.’” In re

Klopfenstein, 380 F.3d 1345, 1348 (Fed. Cir. 2004); see Acceleration Bay,

LLC v. Activision Blizzard Inc., 908 F.3d 765, 772 (Fed. Cir. 2018)

(explaining that public accessibility is “the touch-stone” in determining

whether a reference qualifies as a printed publication).

Petitioner argues that Fratric qualifies as a printed publication because

it “was published at least by August 26, 2012, to GitHub, an Internet hosting

service for software development and version control that is commonly used

to host opensource and other public software projects.” Pet. 16 (citing

Ex. 1002 ¶¶ 51–52). For support, the Petition includes an annotated

screenshot from GitHub, depicting a portion of the first page of Fratric and

the GitHub header, which shows the Fratric filename (“ropguard.pdf”), a

“commit” date of August 26, 2012, and a repository visibility of “Public.”

See Pet. 17.

We agree with Patent Owner that the screenshot is insufficient to

establish that Fratric was a printed publication prior to the January 27, 2015

filing date of the ’591 patent. First, there is nothing in the record to show that

the screenshot was of material that existed prior to the ’591 patent’s filing

date, as there is no citation for the screenshot, it does not appear to be taken

from an exhibit, and it is undated.4 Second, the record shows that the

visibility setting of a GitHub repository may be changed (see Ex. 1011), and

4 Patent Owner provides a portion of a screenshot from the “Wayback
Machine” indicating that https://github.com/ivanfratric/ropguard was not
indexed earlier than June 11, 2018. See Prelim. Resp. 25. This does not
prove the repository was not available earlier (it may have existed earlier but
just not have been crawled), but it does indicate that Petitioner’s publication
date cannot be corroborated by the Wayback Machine.

IPR2023-00895
Patent 10,284,591 B2

10

there is no evidence that the “Public” setting shown in the screenshot had not

changed over time. This means that if the screenshot was taken after the

priority date (which it almost certainly was), it is not sufficiently probative of

the visibility status before the priority date.

Petitioner asserts that “Fratric was published at least as of the GitHub

‘Latest commit’ date of August 26, 2012, displayed on the publicly-

accessible GitHub, Inc. webpage.” Pet. 17 (citing Ex. 1002 ¶ 77). This is

unpersuasive because although a “commit” records file additions or changes

in a GitHub branch (see Ex. 1010), those new or changed files would not be

accessible by the public if the repository was set to private and, as explained

above, Petitioner has not shown that the Fratric repository was publicly

visible prior to the critical date.

For these reasons, we conclude that Petitioner has not met its burden of

establishing, by a preponderance of the evidence, that Fratric is a Section 102

printed publication. It follows that Petitioner has not established a reasonable

likelihood of proving at least one claim of the ’591 patent unpatentable.

III. CONCLUSION

Having determined that Petitioner has not established a reasonable

likelihood of proving that at least one claim of the ’591 patent is unpatentable

over the cited prior art, we do not institute an inter partes review.5

5 Because we deny the Petition on the merits, we do not reach Patent Owner’s
request that we exercise our discretion to deny the Petition based on the state
of the related litigation. See Prelim. Resp. 3–20.

IPR2023-00895
Patent 10,284,591 B2

11

IV. ORDER

It is ORDERED that no inter partes review is instituted in this

proceeding.

IPR2023-00895
Patent 10,284,591 B2

12

For PETITIONER:

Joseph T. Miotke
Eric Chadwick
Christian Girtz
Erin Block
DEWITT LLP
jtm@dewittllp.com
ehc@dewittllp.com
cgirtz@dewittlp.com
eblock@dewittllp.com

For PATENT OWNER:

Brian Eutermoser
Russell E. Blythe
Mikaela Stone
KING & SPALDING LLP
beutermoser@kslaw.com
rblythe@kslaw.com
mikaela.stone@kslaw.com

	I. Introduction
	A. Background
	B. Related Proceedings
	C. The ’591 Patent
	D. Asserted Grounds of Unpatentability

	II. ANALYSIS
	III. CONCLUSION
	IV. ORDER

